Out of Plane Thermal Conductivity of Carbon Fiber Reinforced Composite Filled with Diamond Powder
نویسنده
چکیده
Highly conductive fillers have a strong influence on improving the poor out of plane thermal conductivity of carbon fiber reinforced composites. The objective of this study has been to investigate the role of the diamond powder (DP) in enhancing the out-of-plane thermal conductivity of the woven composites. Samples of the standard modulus T300 carbon fiber composite with 44% and 55% fiber volume fraction and the high modulus YS90A carbon fiber composite with 50% volume fraction were fabricated with their matrices comprising of neat epoxy and different loading of diamond powder within epoxy resin. Steady state thermal conductivity measurements were carried out and it was found from the measurements that the out of plane thermal conductivity of the standard modulus composite increased by a factor of 2.3 with 14% volume fraction of diamond powder in the composite while the out of plane thermal conductivity of the high modulus composite increased by a factor of 2.8 with 12% volume fraction of diamond powder in the composite. Finite Element Modeling (FEM) with the incorporation of microstructural characteristics is presented and good consistency between the measurements and FEM results were observed.
منابع مشابه
Thermal Conductivity and Thermal Expansion Coefficient of Gfrp Composite Laminates with Fillers
This research paper compares the thermal conductivity and thermal expansion coefficients of glass fiber reinforced epoxy composite laminates (GFRP laminates) made using the Hand layup technique. The composite laminates were fabricated by filling with varying concentrations of fly ash, stone powder, aluminium oxide (Al2O3), magnesium hydroxide (Mg (OH)2), Silicon carbide particles(SiC) and hemat...
متن کاملThermal Properties of Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites
Carbon fiber reinforced polymer (CFRP) composites possess many advantages for aircraft structures over conventional aluminum alloys: light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low thermal and electrical conductivities of CFRP composites are deficient in providing structural safety under certain operational conditions...
متن کاملEffect of Fiber Surface Treatment on Wear Characteristics of Carbon Fiber Reinforced Polyamide 6 Composites
Ozone modification method and air-oxidation were used for the surface treatment of polyacrylonitrile(PAN)-based carbon fiber. The surface characteristics of carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS). The interfacial properties of carbon fiber reinforced polyamide 6 (CF/PA6) composites were investigated by means of the single fiber pull-out tests. As a result...
متن کاملEffect of Chopped Carbon Fiber on Electrical and Thermal properties of Carbon Reinforced Epoxy Composites
This work presents an insight into the effect of conductive filler content on both electrical and thermal properties of a polymer composite system. The electrical conductivity of an insulating polymer can be achieved by dispersing conducting fillers (e.g., metal, graphite powder, carbon black, carbon fiber) in the polymer matrix. The resulting materials are referred to as conducting polymer com...
متن کاملThermal Conductivity of Thermally-Isolating Polymeric and Composite Structural Support Materials Between 0.3 and 4 K
We present measurements of the low-temperature thermal conductivity of a number of polymeric and composite materials from 0.3 to 4 K. The materials measured are Vespel SP-1, Vespel SP-22, unfilled PEEK, 30% carbon fiber-filled PEEK, 30% glass-filled PEEK, carbon fiber Graphlite composite rod, Torlon 4301, G-10/FR-4 fiberglass, pultruded fiberglass composite, Macor ceramic, and graphite rod. The...
متن کامل